
dk Fermi National Accelerator Laboratory 

FERMILAB-Pub-86139-T 

April, 1986 

CALCULATING HEAVY QUARK DISTRIBUTIONS 

John c. conii 
Department of Physics, Illinois Institute of Technology, 

Chicago, Illinois 60616, U.S.A. 
and 

High Energy Physics Division 
Argonne National Laboratory 

Argonne, Illinois 60439, U.S.A. 

Wu-Ki Tung 
Department of Physics, Illinois Institute of Technology, 

Chicago, Illi& 60616, U.S.A. 
and 

Fermi National Accelerator Laboratory 
Batavia, Illiiois 60510, U.S.A. 

A systematic calculation of the evolution of parton distribution functions including the effects 
of heavy quark mass~les is presented. The method involves the use of a special renormalization 
scheme which ensures ordinary massless evolution with the correct number of active quark tlavon 
at all stages, and specifies appropriate matching conditions at thresholds. This method is applicable 
to all orders of the perturbation expansion in principle, and it is simple to implement in practice. 
Results of this calculation using born distributions at low energies as input are examined and 
compared with published results. The heavy quark distribution functions are found to be about a 
factor of two larger then the well-known EHLQ results. 

1. INTRODUCTION 

Most interesting high energy processes shxiied at current accelerators as well as those pro- 

jected for the future are described in terms of fundamental parton-parton (including gauge boson) 

interactions. As the consequence of ‘factorization theorems, ’ l the cross-section for such a process 
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can typically be written as a sum of couvolution intcgmls. each consisting of a .bard xatteriux. 

cross-section for elementary partons and a product of parton distribution functions ior the physical 

hadrons. Thus reliable determination of the parton distribut.ion functions is a key element in the 

study of all current and future high energy processes. 

Published parameterizations of parton distribution functions are usually determined by fitting 

xome set of data. Typically the data consists of structure functions from deep inelastic lepton 

scattering, sometimes supplemented by cross-sections for Icpton-pair production in hadron-hadron 

collisions. The lit is made to a set of QCD-motivated parametric functions which approximate the 

required Qz-evolution in some mergy range. (Here Q is the scaie of the bard scatterinK. A typical 

range of the kinematic variables covered in these fits is 0.05 < z < 0.8. 1.5 GeV < Q < 15 GeV). 

Most work on the evolution of parton distribution functions applies the simple Altarclli-Parisi 

equation with 3 or 4 massless quark flavon, and hence leaves out the direct and indirect effects of 

the maples of heavy quarks. P&on distribution functions derived this way are clearly suspect for 

use in the large Q domain (say of the order of the W- and Z-mass and beyond). 

Not only are the distributions of the heavy quarks omitted, but the distributions of the light 

quarks and of the gluon are affected by the neglect of the bcavy quarks. The effect is most 

important in the small z region, where all the parton distributions (especially the gluon distribution) 

accumulate at high energies. Reliable values of the parton distribution functions at small x are, 

however, precisely what is needed in the calculation of most high energy processes in hadron 

colliders?. 

In this paper we describe a concrete calculation of the evolution of parton distributions using 

the systematic methods of Refs. 3,4,5 to include the effects of heavy quark maaes. This method 

employs a special renormalization scheme whose important property is that all subtractiona are 

done either by minimal subtraction or at zero momentum with massless propagators. It therefore 

has the distinctive advantage that massless evolution is used at all stages, with matching conditions 
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at the thresholds. Xs a result. the rules of calculation of renormalization group cocfficicnts and 

hard scattering cross-sections are well-dr&ned to all orders. and they xc simpif* to carry ant, iu 

practice. Herein is the improvement over the theta-function and other methods that have typicaliy 

been used in other work.‘,“,’ 

The calculations are performed by a computer program that was also designed t,o provide ac- 

curate calculations at small values of z. It carries out the evolution of the parton distributions. 

given any specified set of parton distribution functions at a chosen initial scale Q = Qo, and given 

a specified value of LJ~D. We have used the program to calculate the parton distributions ob- 

t,ained by using various starting distributions corresponding to commonly rued parameterization? 

We compare the results both v&h each other and with the results of Eichten et aL2 Above the 

thresholds, our c&uIation yields considerably more heavy quarks than the calculation of Eichten 

et al 

in Sect. 2 we describe the renormalization procedure for crossing B quark flavor threshold. In 

Sect. 3. we enumerate the QCD parameters which enter the calculation. We discuss in some detail 

the definition of the running coupling o.(p) and the relationa between various definitions of &IJ 

Sect. 4 spells out the numerical evolution procedure and Sect. 5 describes the main results of our 

study. Sect. 6 contains summary remarks and discussion 

2. Parton Evolution Across a Mass Threshold 

In quantum field theory, parton distribution functions correspond’ to certain specialized 

Green‘s functions. (Alternatively, moments of these functions correspond to hadronic matrix el- 

ements of the twist-two operators of the theory.9) It follows that the precise definition of these 

distribution functions must depend on the renormalization scheme adopted. The physical .&ucture 

functiona for various experimentally measurable quantities are, of course, renormalization-scheme 
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independent. They are convolutions of parton diatributionfunctionr with hard acntlering ampiitudca 

(corresponding to Wilson coefficients in the ianguage of the operator product expansion). Henrr. 

the hard scattering amplitudes are also renormalization scheme dependent. and this dependeucc 

compensates that of the parton distribution functions. 

The methods of perturbative QCD are most simply applied either far below mass thresholds 

(when the decoupling theorem ” ran be invoked) or far above thresholds (when the quarks can be 

treated as massless). Our methods provide a systemat,ic way of working in threshold regions a4 

well. The methods apply whatever the number of heavy quarks and irrespective of whether their 

masses are close or far apart. Ry a heavy quark. we mean one whose renormalized maw parameter 

is sufEciently larger than A. The charmed quark is presumably marginally heavy enough. 

For the sake of clarity, let us focrls on one single flavor threshold, associated with a quark of 

mass Mm+,. where n is the number of quarks with maSs less t,han M,+,. To define a perturbation 

expansion in terms of renormalized quantities, we must introduce a scale parameter P. We let a.(a) 

be the effective strong coupling at that scale. In a perturbative calculation of a hard-scattering 

cross-section on an energy scale Q, /, must be chosrn to be of order Q. 

Our parton distributions when calculated at a scale /J must rrflect the actual physics on scalrs 

of order p. In particular, they must reflect the way in which the heavy quark appean. NOW. the 

decoupling theorem tells us that when p < Mn+I, the effective number of flavors, net,, is n. On 

the other hand, when p > M,+, , we should neglect the mass of the quark, so that nc,/ = n + 1: 

the (n + l)th quark participates as fully in a hard scattering on such a scale as the lighter quarks. 

Since the value of p does not correspond to exactly one particular value of a momentum, it 

is not possible to find a precise value of /1 that correspond4 to the quark threshold. Rather we 

will choose a threshold value p = pn+L by the natural convention that the effective coupling is 

continuous. We will see below that in our scheme, with m renormalization for light quarks, this 

threshold value is p,,+, = Ma+, Above this value. we define nc,, = n+ 1. while below it we defme 
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“c,, = n. 

The renormaiization scheme we choose to we was first &lined by Collins. Vilczek. ad Zer.“.’ 

It applies the m prescription to Feynman diagrams without amy heavy quark lineu. ad zero- 

momentum subtraction (BPHZ) otherwise. For t,his pwpose. n quark is treated as ireavy or light 

according to whether p is greater or less than the associated threshold. as defined above. Thus 

if the only relevant heavy quark is the one of mass Mnti, then the scheme amounts to witchiiq 

between two schemes. R” and R’. 

The scheme R” is rxactly the same as hhe osuai MS srheme: it is an appropriate xhrmc 

when or > Mm+,. The formulas for the coupling I., Wilson roefficirnrs <and rmormniizatioo 

group coefficients (including the Altarelli-Parisi evolution kern&) are ail st,andard. The number 

of flavors which appears in these formulas is (n + 1). These results cannot be extended into the 

p < M,+I region because the perturbation series contain terms such as [a.(/~) In(M,,+,/~)lt, so 

that the higher-order terms would not be smaller than the lower-order terms. 

In the R’ scheme, we only apply m subtractions to those graphs that have no heavy quark 

lines. (For the cake at hand M,+, is heavy.) Other graphs are subtracted at zero external momen- 

tum. and with the light-quark masses set to zero. It can be demonstrated that this scheme does not 

induce extra infrared divergences, and that it preserves gauge invariance.3-‘.‘1 For Green‘s func- 

tions whose external momenta are much less than M,+, , the (n + 1)th quark flavor is decoupled. 

This is manifest in this scheme: the effective low-energy theory, with n quarks. is obtained merely 

by dropping all graphs that contain heavy quark lines, without needing to adjust the value of the 

coupling. The formulas for the running coupling o,(p), th e renormalization group coe&ients. the 

Altarelli-Parisi evolution kernels, etc are the nme as in the KG scheme when the number of flavors 

is n. The R’ scheme is not very useful for Green’s functions with momenta far above the threshold. 

since there are logarithms of the ratio oi momenta to the heavy mass. 

The overall renormaiization scheme. denoted by R. consists of combining the ii!’ scheme above 
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threshold with the R’ scheme below threshold. The implementation of this method require3 the 

calculation of the (finite) renormalization coefficients needed for t,he transition R” ++ R’. and the 

specification of the threshold where this transition takes place. 

Now to first order in a,, the relation between the couplings in the two schemes is5 

af(/4)=o;(p) l--$Ll~ [ Ir2 I 

It is convenient to choose the threshold p,,+l such that the transition R” ++ R’ results in a 

continuous effective running coupling 

64. when P > hn+~> 
Q!(P), when p < b+, 

From eq. (I), it is clear that the appropriate choice is 

The relation between the parton distribntions must have the form 

/,‘(Z,P) = fl(z,a) + */,I $-p::‘59 ~)~h). 
I 

(2) 

(3) 

(4) 

where f;(z, JL) is the distribution function of pa-ton i at scale /1. The coefficients C! can be found 

in Ref. SQ. When p is below A+,, the distribution function for the (n + I)th quark is suppressed 

by a power of its mass, and we therefore neglect it. TIms, the only coefficients Ci in eq. (4) which 

concern us are C; and CL, where p denotes the gluon and H the heavy quark. The other coefficients 

are either higher order in a, or else multiply into p,, which vanishes at threshold. At our chosen 

threshold, /~,,+l = &&+I, both C; and C& vanish, as they are proportional to lnM,,+l/~, just like 

the first order term in eq. (1). It follows that all our parton distribution functions are continuous 

at the t.hreshold given by eq. (3). 
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3. QCD Parametenr 

The basic QCD parametera are: the total number of quark flavora nf, the rna~s parameten 

of the quarks, M,,(n = 1,2, . . . . n,), and the coupling, a.. Now the value of the coupling (and also 

of the masses) depends on the scale parameter, p, introduced in the renormalization procedure. 

It is generally convenient to parameterize the dependence on /, by a single parameter A with the 

dimensions of rnas~‘~. Since the value of A is scheme dependent and we have chosen a somewhat 

unusual renormalization scheme, it is necessary to explain our definition of A, as well aa its relation 

to the conventional values quoted in the literature. 

The parameter A enters QCD calculations only through the running coupling a.(p). When 

we have one or more heavy quarks in the theory, the effective number of quark flavors depends 

on the renormalization scale p (which is usually chosen to be equal to the momentum scale Q of 

the application). For A4,, < p < &+I, the effective number of flavors is defined to be n. Then 

the effective value of A in this region. denoted by A(n), is related to a.(p) by the second order 

formula’* 

h(n) 
a*(p) = h$,A(,,)Z 

1 _ b,(n)z Inlnp*/A(,@ 

> b(n) h~*/A(n)’ ’ 
(5) 

where 

b,(n) = 
12.7 

33-2n’ 

b(n) = 
24* 

153 - 19n 

The values of A(n) for different n are not independent. The relation between adjacent ones, 

A(n) and A(n + I), is determined by the relation (I) between the corresponding couplings. Thus. 

only one of the nf numbers {A(n)} can be independently chosen. We make the convention that 

A(nf) is the independent variable and denote it simply by A. This is the conventional Am in the 

complete theory, with n, quarks. 
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Given A (= A(n,), we can obtain the values of A(n),n = n, - 1. “1 - 2, . . . . 1 numerically. by 

solving eq. (1) at the threshold. Alternatively, we can expand the two sides of the equation in 

inverse powera of In($/A(n + 1)‘) and take the lead&most powers. This results in: 

In [A;‘$] = [l - b,$‘L)] h [A(t?+$] 

- b,(?;;;n: I)] lnln [A(tt+i)2] 
(6) 

+ [ii%] Ln [“‘i:,:,“] + cJ (Ln(M.:l,b(J 
Each time a,(p) is needed, we Grst determine n by the condition M, < p < A&+,, and then use 

eq. (5) to evaluate the running coupling (to second order). 

A detinition of A that is often used in phenomenological analyses of data is the “leading order’ 

(or ‘first-order”) ALO, which is related to a.(p) by the first term of eq. (5) with a fixed number of 

quark flavors n (usually taken to be 3 or 4). 

This definition is simple but incorrect in principle. In particular, from the calculable correction 

terms, it is known that ALO measured in different processes or at different energies will - in 

value, although a properly defined A should be a constant in QCD. Furthermore, even in work 

where the full formula eq. (5) is used, the number of quark flavors is often taken to be a constant 

(typically 4). 

It is useful to establish a correspondence between our A-parameter and the A-parameters used 

in standard analyses, by requiring approximate equality between the functions o.(p) in the schemes 

over a limited range of p. (It is not possible to enforce agreement for all p’*.) We choose this range 

to be around /? - 10 GeV’. Since a.(p) only varies 81owIy, the res&s are not very sensitive to 

this choice. 

In fig. 1 we plot, aa functions of our A, the equivalent values of ALO and of Am with the usual 

choice n = 4 for these last two values. For our prescription, we have set n, = 6 and have chosen 

{M;. i = 1, .._, 6) to be equal to their conventional values. (We have assumed M, = 40 GeV.) 
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In iig. 2 we plot a.(p) as a function of p over the range 1.5 GeV < fi < 10’ CeV for the 

three schemes described above. For the two schemes with fixed flavor number. we have set this 

number to four. We choose ALO = 0.2 GeV and set the A-parameters for the other schemes to their 

corresponding values determined from fig. 1. The graph is divided into two ranges of p in order 

to show the details of the comparison. Since the function a.(p) for a fixed number of (massless) 

quarks haa monotonic and continuous derivatives, the fir&-order and m curves cross only at one 

point. On the other hand, our a.(p) feels the effect of the heavy quark thresholds. The function is 

required to be continuous at the thresholds: but its first derivative changes its value going through 

each threshold, reflecting the turning-on of the new flavor degree of freedom. This can be seen in 

fig. 2 by the fact that our a.(p) curve oscillates around the first-order a,(p) curve aa we pass the 

successive thresholds. 

It is of obvious interest to compare our results with the widely used parameterieation given 

by EHLQ’. So let us note the pertinent features of their procedure for treating heavy quark 

masses. They choose the threshold, h in p for each heavy quark to be /our timea the quark’s mws 

parameter. At the same time a.(p) is calculated by the lowest order formula and is required to 

be continuous at P = IL.. The consistency of these choices appears to be questionable; however, 

in practice. the two curves for a.(r) can be made very close, provided the value of A is adjusted 

appropriately. If we plot a.(~) based on the EHLQ formula on Figs. 2 a,b, it will interpolate 

between the first order II, (dashed curve) at low /I and our full formula (solid line). But the value 

of A that will do this ia not the same as any of ours. 

4. CALCULATIONS 

We appiy the renormalization procedure describing in the previous two sections to the renor- 

9 



malization group equations obeyed by the parton distribution functions (Altareiii-Parisi equation):‘3j 

p~f~(z,p) = y ’ du 
i C’ .Jj s+.bl’f$,Pi~ (7) 

where i, j are parton labels, and {I’!} are renormalization group coefficients (‘evolution’ kernel 

functions). The functions {P:} in our scheme coincide with the standard expressions” in the m 

scheme, when the number of quark flavors is set to the effective number of flavors nefl at the scale 

p. We solve these integro-differential equations numerically, starting from an initial value JL = Qiai 

and evolving through successive thresholds to obtain the full set of {/i(z,p)} over the desired 

range of z and ~1. At each of the intermediate thresholds. the parton distribution are continuous. 

for reasons discussed in Sect. 2, but the evolution kernels change due to the opening up of the new 

quark-flavor channel. 

Since existing parton distribution function parameterizations appear to give an adequate repre- 

sentation of experimental deep-inelastic structure functions in the currently available energy range, 

ve do not make any attempt to fit data with our calculations. Our emphasis is on studying the ef- 

fects of the opening of heavy quark flavor channels on the evolution of parton distribution functions 

from current energies to those of interest in future accelerators. To this end. we use standard pa- 

rameterizations of the parton distributions to provide the input set of parton distribution functions 

at p = Qini , and then generate the full set of parton distribution functions over the desired range. 

We then examine the heavy-quark distributions at high energies. We also compare our results with 

some existing estimates of heavy quark distributions, and compare results obtained with different 

sets of input with each other. 

In solving eq. (7), we tint separate the (flavor) singlet and non-singlet parts of the quark 

distribution functions. Let i = 1,2, ___, G denote the quark flavors, i = -I..., -6 the corresponding 

anti-quarks, and i = 0 the gluon. Then we define the singlet-quark distribution function as 

fS(Z? Pi = OK++’ + f-42, P)l. (8) 
I>0 
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The non-singlet part of each Eavor distribution function is then debed as 

where n,fl(p) is the number of active quark fIavon, at scale p. 

The singlet quark function fS and the gluon function f;=o satisfy a set of (two) coupled 

equations. Each of the non-singlet function /,y” evolves independently by itself. Hence. the initial 

functions f;(z,p = Qid) are split into singlet and non-singlet pieces according to eqs. (8) and (9); 

the evolution in p is then performed for {fs, fo} and {fy’}. Fimily we reassemble the results to 

obtain the full fi(z,p) for the desired range of z and b. We do not employ the usual separation 

of parton distribution functions in terms of ‘valence’ and ‘sea’ distributions. Each of such schemes 

presumes certain symmetries of the ‘sea’ distributions which are not necessarily n consequence of 

QCD, and are subject to modifications in the light of improved experimental data. 

5. RESULTS 

Much recent work on high energy processes involving heavy quarks has used the parton dis- 

tributions calculated by Eichten et aL2 It is therefore of interest to calculate parton distribution 

functions in our renormalization scheme using the same input QCD parameters and initial distri- 

butions as EHLQ, and to compare the results at high energies. 

In general. we obtain heavy quark distribution functions that are substantially larger than the 

corresponding ones obtained by EHLQ. For a first look, let us check the second moment of the 

distribution function. It measures the momentum fraction carried by the parton. In fig. 3a we 

show the second moments of the ‘sea-distributions’ (u, d, s, c, b, and t) from Set 1 of EHLQ as 

functions of Q in the range 2.5 GeV < Q < 10’ GeV. To compare with these results, we plot 

in fig. 3b these same moments obtained from our distribution functions computed with the same 

input distributions at f&pi = 2.5 GeV and equivalent QCD parameters to those of EHLQ. 
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The moment of the distribution of a heavy quark (c, b, or t), as given by our calculations. 

evolve at a similar rate in LnQ to that for a light quark (u, d. or a), once we are much above the 

threshold for the heavy quark. On the other hand, the EHLQ moments show two distinct rates 

of evolution, with the heavy flavors clearly growing more slowly. As a consequence, we obtain 

substantially more heavy quarks than EHLQ. The ratios of corresponding (heavy quark) moments 

from the two sets lie in the range 1.C to 2.0 from Q = 10’ GeV down to a few times the threshold 

value for each flavor. The light sea-quark moments behave qualitatively similar for the two sets, 

with our results somewhat lower than those of EHLQ. The II-, d- and gluon- moments are plotted 

against In Q for the EHLQ distributions (dashed lies) alongside those from our distributions (solid 

lines) in fig. 4. We we that the gluon momentum fractions have somewhat different evolution in 

the intermediate energy range, and that our gluon fraction is smaller (reflecting more ‘leakage’ to 

heavy quark flavors). The behavior of the u- and d- moments are similar in the two e&s, with our 

results again being slightly smaller than the other set. 

The trends indicated by the momentum fraction manifest themselves in other ways. In fig. 5 

we present {h(z, Q)} aa functions of In Q in the same range as above, with z 6xed at IO-‘, a typical 

value of interest at the next generation of accelerators.* Fig. 5a shows the sea distributions of EHLQ 

set 1; and fig. 5b shows the corresponding curves of our calculation. The distinctive slower rate 

of growth for heavy flavors in the EHLQ set is again apparent. This feature is more pronounced 

at smaller z, e.g. z = 10m4, and less 80 at higher values of z. In fig. 6 we plot the distribution 

functions Venus z in the range IO-’ < z < 5 x 10m2 for a f?xed value of Q = 83 GeV. Fig. 6a shows 

the gluon-, u-, and d- curves from EHLQ set 1 and from our work. All three distributions from the 

two sets behave similarly. Fig. 6b shows the u-, d-, s-. and c- distributions; and fig. Gc the b- and 

t- distributions. We see that the difference in the size of corresponding heavy quark distributions 

from the two sets (by about a factor of 2) is relatively uniform in this z range. 

It should be noted that EHLQ adopt mass-dependent evolution kernels, following the prescrip- 
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tion oi Gliick. Hoffmann and Reyai5. The differences produced by t,he modified kemeis are insigniii- 

rant except near the thresholds. Furthermore. these differences c~1. in principle. he compensated by 

differences in the hard-scattering cross-sections, ii both schemes are applied self-consistently. The 

prescription for calculating hard-scattering cross-sections appropriate to matching the prescription 

for EHLQ’s parton distributions has not been explicitly discussed. to our knowiedge. 

However, we do not believe that the di&rences in the heavy quark distribution functions 

between the EHLQ set and OUA can be explained by differences in the choice of threshold points 

and other detailed prescriptions near the thresholds. The reason is that far above the thresholds. the 

logarithmic derivative of the sea distribution functions and of their moments should be dominated 

by the gluon term. Thus they should be Ravor-independent. This feature is independent of the 

prescriptions adopted near the thresholda. The logarithmic derivatives can he read off figs. 3,-S 

simply aa the slopes of the curves. It is manifest that our distributions have flavor independent 

SlOp?S. 

We can also investigate the question: How much do our results on the partook distributions. 

especially for the heavy quarks. depend on the input distributions? The answer can he obtained 

by comparing results derived from different sets of inputs all of which fit low energy data. In 

particular, we have systematically compared results derived from input functions of EHLQ set 2 

nnd of the Duke-Owen@’ set 1, in addition to EHLQ set I as presented above. The predicted heavy 

quark momentum fractions are almost the same in all three cases. This is perfectly understandable 

as heavy quark evolution is driven mostly by the gluon distribution; the gluon momentum fraction 

is similar in all sets of partan distribution functions. 

We show in fig. 7 the momentum fraction carried by the sea distributions, u, d, s, c, h, and 

t as functions of InQ in the same range as before. The curves of fig. ‘la are calculated using the 

Duke-Owens parameterization: those of fig. 7b are our rcsuits ruing the Duke-Owens distributions 

at Q = 2.5 GeV as input. The v&e of A used in the caiculation corresponds to that of Duke- 
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Owens in the sense described in sect. 3. We note that: (i) the c-, h-, and t- curves are almost 

indistinguishable from the corresponding ones in fig. 3b; (ii) Duke-Owens uses a SU(3)-symmetric 

sea, hence the u-, d-, and s-curves coalesce into one; (iii) there are no heavy quark lines in fig. 7a 

since the Duke-Owens parameterization assumes four (6xed) flavors; and (iv) the abnormal behavior 

of the two curves in fig. ‘la above Q N 800 GeV reveals the upper limit of the range of applicability 

of this parameterization (note the change of scale in the ordinate). For completeness, we show, in 

fig. 8, the momentum fraction carried by the gluon and the u- and d- quarks. Our curves (solid 

lines), especially the gluon one, are consistently lower than those of Duke-Owens (dashed lines) due 

to the creation of the heavy quark fiavors. In contrast to the second moment. the z-dependence 

of the distribution functions for the various flavors and the gluon from the various sets can differ. 

The difference diminishes, however, as Q increases. 

6. DISCUSSION 

We have men that the evolution of pm-ton distribution functions in p, incorporating quark flavor 

threshold effects, can be formulated in a systematic way utilizing an appropriate renormalization 

scheme. The scheme adopted here is the natural extension of the conventional m echeme, giving 

the appropriate number of active quark flavors for any given scale F. In applying the parton 

distribution functions calculated in this scheme to physical processes, it is necessary to fold in the 

relevant hard scattering cross-sections (or Wilson coefficients) defined in the same scheme. 

Most phenomenological applications in the literature use the leading order expressions for the 

hard scattering amplitude and ignore quark masses. This is not a good approximation when large 

coefficients in the first order QCD correction term are known to exist (e.g. z*.terms in lepton-pair 

production), or when the relevant physical variable Q is not far above some heavy quark threshold. 

Under the latter circumstance, inclusion of mass effects in the hard scattering amplitude is clearly 
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3ecded to properly account for the smooth turn&-on of a new thrcshoid for we spcciSc process. 

Paying attention to both types of correction miil en.wre 3 more meaningi% comparison of theory 

with experiments. Failure to do 80 can lead to misieading discrepancicv in fitted vaiues of QCD 

parameters or in features of the parton distribution iunctions. 

The heavy quark distribution functions in nucleons, derived from our calculations are roughly 

a factor of 2 bigger then those obtained by EMLQ. RI ore heavy quarks (at smail z) will enhance 

processes which are dominated by incoming heavy quarks. A typical case is Hiqgs production in 

a mass raqe where it is made by quark annihilation. (Its coupiing to a qurk is proportionai to 

the quark’s mass.) Even with our disttihution functions, however, the heavy quark flavor content 

of the nucleon is still quite small compared to the values for gluons and valence quarks. 

We have Seen that the method of generating parton distribution functions by direct numerical 

solution of the evolution equations works easily for any chosen set of values of input distribution 

functions and fundamental QCD parameters. They satisfy the QCD renormalization group equa- 

tions and incorporate heavy flavor thresholds. This method provides a more Eexi’ole and more 

powerful alternative to the nx of fixed parameterizations of the parton distributions in B wide 

variety of applications to high energy processes. 

The programs for these calculations are integrated into a package which also con&u (a) 

routines which evaluate the widely used parameterizations for parton distribution functions, and 

(h) an interactive module which allows the convenient comparison of various parton distribution 

functions as functions of z and F, and of moments of parton distribution functions aa functions of 

/A. The subprogram to solve the evolution equations contains parameters which control the desired 

accuracy of the numerical calculations. For any given set of QCD parameters and input functions. 

the calculation to generate the full set of {f;(z,p = Q)} for 10m4 < z < I and 2 GeV < Q < 

IO’ GeV with less than 2 - 3% error takes a few minutes of CPU time on a VAX 780. (This 

-rogram is available to interested users upon rrqwst.) 
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FIGURE CAPTIONS 

Fig. 1 Equivalent values of Am and A ~0 (for 4 massless quark tlavors) as functions of A (the QCD 

SC& parameter appropriate for 6 flavors with physical mass thresholds). Corresponding A’8 

yield comparable a.(p) in the range 2 GeV < Q < 5 GeV when used in their respective 

contexts 

16 



Fig. 2 The ruming coupling aa a function of p for three definitions of a.(p) : (i) the solid line 

represents eq. (S), using 6 quark fiavors with decoupling taken into account at lower energies; 

(ii) the dashed line represents the ‘i%st order’ o.(r) using 4 flavors: and (iii) the dotted line 

corresponds to the second order QCD a.(p) evaluated in the MS scheme with (fixed) 4 flavors. 

The A-v&m used are those corresponding to ALo = 0.2 GeV (fig. 1). The two parts of the 

figures shows two separate ranges of p. 

Fig. 3 Second moments of the ‘ma distributions’ as functions of In Q. Part (a) is for EHLQ distribution 

functions; part (b) shows the same moments obtained from our calculation. 

Fig. 4 Same as fig. 3 for the valence quarks and glum. EHLQ results are in dashed lines; our results 

in solid lines. 

Fig. 5 Parton Distribution Functions at f&d z = IO-’ plotted against IogQ: EHLQ results (dashed 

lines) in part (a) and our results (solid lines) in part (b). 

Fig. 6 Logarithm of Parton Distribution Functions at fixed Q = 83 GeV plotted against log%. Keys 

to the curves are given on the graphs. Part ( ) h B 8 ows the glum and the valence quarks; part 

(b) shows the lighter sea-quarks u, d, s, and c; part ( ) h c J ows the heavy quarks b and t. 

Fig. 7 Second moments of sea-quark distributions from Duke-Owens parameterization set I (part a) 

compared with our results (obtained with Duke-Owens input) (part b). Except for the break 

in the vertical scale in part (a), these plots can be directly compared with fig. 3. 

Fig. 8 Some M fig. 7 for the glum and the valence quarks. (cf., fig. 4). 
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